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l-. Introducti-on

A prohibiÈed species nonthly bycatch rate for a vessel is the
ratio of either the total weight or total number of the prohibited
species caught by the vessel during a month to the total weight of
fish taken by the vessel during the nonth. To make statistical
inferences about a vesserrs bycatch rate, some of the hauls of
fish, that the vessel rnakes during the month, are randomly selected
for sampling by an observer aboard the vessel. For each selected
haul, the observer either weighs or counts all of the prohibited
species present in the haur or weighs or counts arl of the
prohibited species present in several baskets of fish taken from
randomly selected parts of the hau1.

InIe will restrict our attention, from this point oD, to the
problern of naking statistical inferences about a vessel's monthly
bycatch rate of haribut. The data, relevant to rnaking these
inferences, consist of total weights of the baskets poo¡_ed and
total weights of halibut in the pooled baskets, when arr haurs
selected for sanpling are basket sampled. lrihen onJ-y some of the
selected hauls are basket sarnpled, and the others are whole haul
sampled, the information used to make bycatch rate inferences
include total haul weight, total basket sample weight, and weight
of halibut in the pooled basket samples, for basket sampled hau1s.
For whole haul sarnpl-ed hau1s, the information used is total- haul
weight and total weight of the prohibited species in the haur.

Described in this report are the statistical analyses of the
data taken by observers for the vessel incentive program. The goal
of these analyses is useful statistical inferences about the
bycatch rate of halibut for a given vessel, when the vessel fishes
during the course of a given month.

The first step in the analyses of the data for a vessel-rnonth
is the application to the data of a statistical procedure which
produces robust estimates of rnonthly bycatch rates. The term
robust, here, refers to the fact that unusuar haur sampling
results, obtained by an observer, do not have an inordinately large
effect on the bycatch rate estimate produced by the procedure. For



2

exampLe, the procedure is designed to produce a reliable bycatch
rate estinate, when relatively few basket samples contain extremely
l-arge amounts of halibut, but the majority of the basket samples
contain very little haLibut. This robust bycatch rate estimation
procedure is developed in Section 2.

The second step is the use of observer data to calcul-ate a
lower 952 confidence lirnit for a vesselrs nonthly bycatch rate.
This confidence limit is a number such that we are 952 confident
that the vessefrs actual monthly bycatch rate exceeds the number.
The method used for calculating the confidence limit is described
in Section 3.

The methods, used for finding a bycatch rate estimate and a
Iower 95å confidence linit for a bycatch rate, are based on certain
statistical assumptions about the nature of the observed random
variables, namely total basket sample weight, prohibited species
weight in a basket sample, total weight of a haul, and weight of
the prohibited species in a haul. In order to determine whether or
not Èhe procedures for finding these estimates and lirnits are valid
the reasonableness of these assurnptions must be examined.

The data analysis techniques used on observer data to check
the validity of the assumptions, that need to be made for
application of the inferential procedures, are discussed in Section
4. Application of these techniques is the third step in the
analyses of vessel incentive program data.

The fourth step is the calculation of 95? confidence limits by
the use of a technique other than the procedure used in the second
step. This step is discussed in Section 5, and it is meant to serve
as an additional check of the reasonableness of the results
obtained thus far by the data analyses. The technique is a generaÌ
purpose procedure, for producing confidence limits, which may be
applied without rnaking any statistical assumptions about the
variabl-es involved.

For those vessel-month situations in which aII of the hauls
selected for sampling are basket sampled, one more set of analyses
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of the data is performed. This set essentíally consists of the
repetition of the first four steps on information which consists of
basket sample measurements as well as weights of the hauls frorn
which the basket sarnples were taken. This step serves as a final
check of the reasonableness of the results obtained by the previ-ous
analyses. It is also an attempÈ to alleviate concerns expressed by
some that total haul weight is not used in naking inferences about
monthly bycatch rates, when a1l hauls selected for sarnpling are
basket sampled.

2, Robust Estimation of Bycatch Rates

We will consider first the case where all observer samples
from hauls are pooled basket samples. Let the random variable x
represent the total weight of a pooled basket sarnple and the random
variable y represent the weight of the halibut in this pooled
basket sample. The halibut bycatch rate may be defined to be the
unknown constant r such that the mean of the random variable y-rx
is zero.

Let (x1rY1),..., (xn,Yn) represent n pairs of observations of x
and y. These pairs of observations are to be used to make

statistical inferences about the unkno$¡n parameter r, and we will
first consider the problem of finding an estimate of r. The
estimate of r will be the value of q such that a reasonabLe, robust
estinate of the mean of the random variable y-qx ís zero.

To be sure, one possible estimate of the mean of y-qx, for any
value of q, is

(v¡øx¡l = |-qV ,

where .Í and y- represent the averages of the D Xits and the n yi's,
respectively. The value of q which makes this estimate zero is
q=l/x-,and this would be the corresponding estimate of the bycatch

1s
nL.t i-L

(1)
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rate. The problem with using (1) as an estinate of the mean of y-qx
is that it is not at all necessarily robust. That is, a relatively
few inordinately large values for some of the y¡-gx¡rs can have a

profound influence on this estimate. Our analyses of vessel
incentive program data have suggested that, in some cases, the
distribution of the random variable y-qx is highly skewed to the
right with a heavy right tail. When this is the case, one would be

leery of using the average of a set of observations of y-qx to
estimate the mean of this random variable. So we seek a procedure
for estj,rnating the mean of the randorn variable y-qx which does not
have this drawback.

For any given value of q, Iet z.t,... rzn represent the ordered
values of y1-gx1 ,. . . ,yn-gxn. If jr q represents the mean of y-gx,
consider an estimator of F q of the form

i zt + (n-s) t
j-1 (2)

Êo =

where t is a number which does not exceed zn and s is the number of
z,rs which do not exceed t. Essentially, this estimator is formed
by repracing alr of the zi's greater than t by the value of t
itself, and averaging the resulting set of Zits.

Suppose that f(z) represents the p.d.f. of the random variable
y-qx. It follows from the work of Sear1s G966) that the val-ue of
t, which makes (2) the estimator of Fs with minimurn mean squared

error, among all such estimators, is the solution, for t, to the
equation

jnrtt-nr) - (1-pr) tnL-cl = o, (3)

where

nr=l't{") d.z, p¿ nr=ftz f (z) dz, (r-pr) nt=l'z f (z) dz,
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and a is the parameter such that f(z)>O, if z2d, and f(z)=O, if
z<a.

The p.d.f. f(z) is unknown, but many analyses of vessel
incentive prograrn data have indicated that a reasonable model for
f(z) is a generalized gamma p.d.f. of the form

--L trn fi¡z
e 2c2 þ ,x)ar-æ(â(oorb,c)0rd=0,

(4)

,/ñ (x-a) c

The appropriateness of the generalized gamma distributj-on as a

rnodeL f or the distribution of y-rx will be di-scussed in Section 4.

If f (z) is given by (a), then p., ptrt, and (l-Pt)Int' in (3) are

rEr d

er = ¡]|tJ' 
b uc-te-udu, d>o

= o(a rn t;t) , d=0,
Cþ

and

ðr(c+å)
(1-pr)tÉ =--GÊ -p#t, d>o

c2

' beT - pflt, d=0,

where O denotes the standard normal distribution
integrals ín (5) and (6) may be evaluated by use of
of Lau (1985).

The procedure used for finding a value for t in (2) is the
following one. A search is used to find the value of t which
satisfies (3). For any given value of t, the quantiti"s pt, ilt, and

- , t-a,d
Pflc = Tä['--' u

cz1
= be 2 øl.tl"

"*1-1d e-' du, d> o

!-l-- ct -1T-'t

(5)

function. The

the algorithn

(6)

(7)
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r.' in (3) are determined by use of (5), (6), and (7) after a, b,
ct and d in these equations are replaced by estinates of these
parameters.

The parameter estimates are based upon 21,...,2n, and a is
estimated first by

where â'=1*[1-(f./n) ]n, and a-=[1-(i/n) ]n-[1-(i-l) /n)", for i=2,...,n.
The estimate (8) is Èhe estimate of the lower bound of a random
variable proposed by Cooke (L979).

The parameters b, c, and d are estirnated by usi-ng Vtr.. .,yn,
where vr=zr-â, for i:1r...rn, and a maximum likelihood estimation
argument. The estimate of d is the solution, for d, to the equation

a = E â¡zir
r=I

after
c. The

Invt
= 0,

satisfies (9). For
to the equation

(8)

(e)

any given value

(10)

replaced
is

by its

*."*i Ln y,-c
q ¿¿ i=1

f,"f
i=1

n
5' vd
j.1

provided a positive value of d

of d, c in (9) is the solution

Y (c) -ln c +In +Ð":
-n

-ltLnr¡''d=0.aLl¿¡ i.1

The solution to
estimate, is the

(10) , for c,
estirnate of

d in (10) is
estimate of b

tlâ

"lt'+åþ=
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!'/here á and á are the estimates of c and d, respectively.
If no positive value of d satisfies (9), the estimate of d is

zero, and the estimates of b and c are, respectively,

6 = (f[ vr)
i-1

Thus, for any value of q, Fn, given by (2), may be calculated.

Ì q is an estimate of the mean of y-qx. Further, a search procedure

may be used to find the value of q such that Ê n is zero. This value

of q is the estimate of the bycatch rate r.
For the case where some of a vesselrs hauls, selected for

sampling by an observer, are basket sarnpled and some are whole haul
sarnpled, a modification of the procedure described above may be

used to estimate a bycatch rate. Let, xi represent the total haul
weighÈ for the i-Èh sampled haul, and y¡ represent xí times the
ratio of the weight of halibut in the sample to the total weight of
the sanple from the i-th sampled haul, for i=1r...,n. Then proceed
as before.

3. Confidence Linits for Bycatch Rates

The second statistical inference that is nade about a bycatch
rate r is a lower 952 confidence }init for this parameter. This
limit is also based on the pairs (x1,yr),...(xn,yn). Here xi
represents pooled basket sample weight or total haul weight, for
the i-th selected haul, depending upon whether observer sampling
vtas strictly basket sampling or a mixture of basket sampling and

whole haul sampling. Also, for the i-th selected haul, y¡

represents either halibut weight in the pooled basket sample, for
the case of strictly pooled basket sarnpling, oE total haul weight
tirnes the ratio of halibut weight in the sample to the weiqht of
the sample, for the mixed sampling case.

1n andê=
-nt/2tlt (In r¡, - rn "6 )21ÃUIt : _.



I

The lower 95eo confidence lirnit that is used is essential-Iy due
to Fieller (1940). The derivation of it starts with the assumption
that y-rx has, approximately aÈ least, a normal distribution with
mean zero. Methods for exarnining the appropriateness of this
assumption will be discussed in the next section.

Var 1V-rV) =Var V*r' Var V-Zr Cov(V,y) ,

and, if the basic assumption is true,

Pl+ > -1.64s1 = o.e5
t/uealV-rx)

( 11)

(L2)

If the parameters in (11) are replaced by estirnates, the
result i.s substituted in the left hand side of the inequality in
(L2), and the resulting inequality is operated on algebraically, it
turns out that the inequality is equivalent Èo

r > y L-2.7 06 cy*-!,G1-s 
( 13 )

x t-2 ,7 06 C)o<

where

(- _Ð(y¡-T)z î ="w-Ñ ' -xx-
\py it

Thus the right hand
Iimit, for r.

E (xr-F)2
, and cr*= 

E (xr-t) U;V)
(Ðy) (Exr)

(13) is a lower 952 confidence

(Exr)2

side of

4. Examining the Appropriateness of Assumptions

The procedure being used for estirnating the bycatch rate, r,
uses as a model, for the distribution of the random variable z=y-
txt the generalized gamma distribution with p.d.f. given by
Equation (4). In order to check the reasonableness of this model,
a nonparametric estimate of the p.d.f. of z ís found and compared
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with a member of the generalized gamma fanily of p.d.f.rs. The
generalized gamma family member used is given by (4), after the
parameters are replaced by estirnates.

Both the nonparametric estimate of the p.d.f. of z and the
generalized gamma parameter estinates are obtained by using as

observations 21,... ¡znt where zi=yi-f*,, for i:1r...,lt, and f is the
estimate of r described in Section 2. The method for obtaining
generalized garnma parameter estimates is the one discussed in
Section 2.

The procedure for finding the nonparametric estimate of the
p.d.f . of z begins with estirnating the location parameter, a, of
the p.d.f . of z by (8). Then a number )'" is determined. l, is such
that w1r...rwn can be regarded as a set of observations from a

symmetric distribution, vrhere wi=k( zi),for i=1, . . ., n and

k(z) = #, ).+o

= Ln (z-â), À=0

The method for deterrnining )'" is described in the appendix.
After 

^ 
is deterrnined, a kernel estimate of the p.d.f . of

w=k(z) nay be found. This estimate is of the form

â(w) =

_ (w-wì
õ 2h2

, (14)

where h is a srnoothing parameter. Silverman (1986) provided a

detailed account of nonparametric p.d.f. estimates of the form
(14). The observations Ì^r1r... rwn and the method of Sheather and
Jones (1991) are used to get, a value for the smoothing parameter h.

Finally, the estinate of the p.d.f. of z is obtained by use of
(14) and a transformation of variables. This estinate is

(15)

The method for finding the nonparametric p.d.f. estimate (15)
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v¡as essentially suggested by lrland, Marron, and Ruppert (199f) . But
the techniques used for finding values for â, )., and h are
different from the rnethods suggested by Vüand, Marron, and Ruppert.

The basic assumption needed for determining a lower 952

confidence linit for a bycatch rate is that

PIV:*>-1.64s1 = o.e5 ,
o

(16)

where V-rx is the average of y,-rx1,... ryn-EXn and ô is an estirnate
of the standard deviation of V-rx.

V'fhen it is determined that the generalized gamma distribution
is a reasonable rnodel for the distribution of y-rx, the validity of
the basic assumption (16) may be examined by use of simulation.

This is done by use of the following algorithrn:
1. Generate a random sample of observations, sây ü1,... run,

from a generalized gamma distribution.

2. Calculate î/s¡, where ui â.tld s¡ =

tE (ur-[ )2)t/2
j=1

"=aËsLJr¡ j=1

3.

4.

Repeat steps 1 and 2

the ratios r1' , .. . ,Etr

obtained by the j-th
j=\, .. . ,M.
Determine p: (#r r*>-t.

a large number, M, times obtaining
* , where rj* is the ratio l/ s¡

repetition of steps 1 and 2, for

645) lvf .

If p, in step 4, is close to 0.95, the conclusion rvould be

that the 952 lower confidence tinit for the bycatch rate is
reasonably va1id.

Step l- of the aLgorithm may be carried out by noting that if
the random variable z has a generalized gamma distribution with
parameters a, b, c, and d, then (z-ald has a two pararneter gamma

distribution with parameters b and c. The algorithms of Cheng
(L977 ) and Ahrens and Dieter (L974) may be used to generate random
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samples from a gamma distribution, and these samples are easiJ.y
transformed into samples from a generalized gamma distribution by

adding the value of the pararneter a to the L/d povrer of each

observation.
The values of the generalized gamma distribution parameters

used in step 1 of the simulation study algorithm would be close to
those pararneter estimates obtained when checking the reasonableness
of the generalized gamma distribution as a model for the
distribution of y-rx. However, these estirnates may have to be

adjusted somewhat to insure that the equation

(17)

holds. This is necessary because, by definition of bycatch rate,
the mean of the distribution of y-rx is zero. The left hand side of
(17) is the mean of a generalized gamma distribution whose

parameter values are the numbers â, 6, ê, and â.

5. Other Confidence Linits for Bycatch Rates

There is another method that may be used to find a lower
confidence limit for a bycatch rate. It is an application of a

statistical technique commonly referred to as the bootstrap.
The data gathered for rnaking statistical inferences about a

bycatch rate r can be summarized by the n pairs (x1,y1),...,(xn,yn).
These pairs may be referred to as data points, and we denote the j-
th of these by d:, for i=L,...,n.

The procedure for finding a bootstrap lower 952 confidence
linit for the bycatch rate r may be described as follows:

1. Calculate an estimate, 1, of r using all of the data
points {dr,...rdn}.

2. Se1ect at random and with replacement d,rs from the set
{d1,...,dn}, one at a tine, until n data points are
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selected. Denote the selected data points by
-* -*d1 

' 
... 

'dn 
.

3. Calculate an estirnate of r using the data points
d.*r... rdn*.
Repeat steps 2 and 3 a large number, B, of times
obtaining the estimates, of r, 1r*,..., îs*.

Let p= l# ( âi. < î) J /8, t be such that

expl-$l dx= p,

4.

5.

and

The bootstrap lower 95?

value of s such that

u2
exp [-t] dx ,

confidence lirnit for r is the

f ¿ 1t-,-J-ø t/2n

12 è,-L,645 1ñ=l+
J-o 

'/2n
6.

# (fj<s)
-q

6. The Final Step

one final analysis of the data is performed for the case where
aIl observer samples are pooled basket sanples. That is, the
analyses described above are repeated using the points
1x't,Yt) ,..., (xn,Yn), where here x, and y, represent, respectively,
the total haul weight and the product of the total haul weight and
the ratio of the weight of the hatibut in the sample to the weight
of the sanple, for the i-Èh haul selected for sampling. This final
analysis serves as a final check of the reasonableness of the
results obtained by the previous analyses, and it is an attempt to
alleviate concerns expressed by some that total haul weight is not
used in making inferences about bycatch rates.
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constant such that w=k(v),

f (w¡ a, b, c) --
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APPENDIX

positive random
where

= "Tt , ),+o

=lnyrÀ=0,

variable and ). is a

k(tz)

has, approximately at reast, a symmetric distribution. To get a

varue for 
^, 

we use, as a model for the disÈribution of w, the
distribution with p.d.f .

I:.+ (zc-1) ( ',u )1-# ,b c>1
2

#r(zh)b
l-l w:4.1trc,

e v¿P o<c<a
2

(f)
z,/Tbl (c*1¡

If c=Lf2, f(w;a,b,c)
essentially the p.d.f. for

(À-r)

is a nor¡naI p.d.f.. ff c>I/2, it is
a three parameter t distribution. The

weights of the tails of this distribution increase as c increases,
and they becorne very heavy if c>1. rf ecr/2, the distribution,
whose p.d.f. is (r), has lighter than normar tairs, and, the tail
weights decrease as the varue of c decreases. The tails are
extremely light, much like those of a uniform distribution, if c is
crose to zero. Thus the distributional moder, given by (r), is a
very flexible one which yields symmetric distributions with tail
weights ranging from very light to very heavy.

rf (r) is the p.d.f . of k(v) and v,l ,... tvn represent the order
statistics for a random sarnple of observatÍons of v, the logarithm
of the likerihood function of the parameters a, b, c, and 

^ 
is

Ertj-l
r, - Ëln f[k(vr);a,b,c)

i=L
(II)

To find an estimate of ), in (r), we find the varue of T which
maximizes (rr). This varue is found by a search, and at each step
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in the search a, b, and ct in (rr), are replaced by suitabl-e
functions of )t and the vi ts.

For each val-ue of )\, the varue of c in (rr) is determined as
follows. Let

r(r) =#j# t

where A1(1,) and A1(¡.) represent, respectively, the averages of the
rast and first 0.05n varues of the ordered set s={k(v1) ,... tk(vn) },
and A2(^) and A3(1,) represent, respectivety, the averages of the i

first and last 0.25n values of the set S which remain after the
firsÈ and 1asÈ 0 . 25n varues are discarded. rf r ( I ) <o . Ls7 4, c is the
sol-ution to the equation

r(À) = 0,20
c-1

1- (r *clq(c) l2) 2c (rrr)c-L '
(t+c[p(c) ],) 2c

where

Ç(c) =0 .67 45+o ,2454c+O . 0? 95c2-o . oo 54c3 -o . oi-05c4

and

p(c) =1. 6 448+1. 5238 c+L. 4202c2+0. 9930c3+O . 4339 c4

If r(À) >0.1574, c is the solutj.on to the equation

å(r)= ?"(?'?t.f .r ?.10'?uÌ (rv)Qcrc.69) ' Q"(O.8lt '

where

h(r) __â(0. erl -4t0. rgl *, 4(o.gs) -ó(0. oe)
O(o.ee)-0(0.31) - ó(0.81) -a(0.1-e)'

Ôttl represents an estimate of the loot quantile based on the set
S, and Q.(t) represents the solution, for x, to the equation
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r=o.5ti.+=åi t-ll '"'+-, .l(c) 14 j I c+i '

this approach to obtaining a value for c in (II) is,
essentially, that of Kappenman (1989). rQ') is an estimate of the
quantity

and (V)

and c>0.
1S

5.

+ [fo(0'7s) w f@) d*. fo'o'st w f(w) dw]
O . 25 Je(0. s) JOrc,zs)

1 lf- wf(w) d*-[o'o'o'twf(w) dw)o. 05 'Jo(o.rr) J--

the right hand side of (III), if f(w) is given
å(l) is an estimate of

o(0.81) -o(0.19) *. 0(0. gs) -o(0. os)ffi-'@,

(v)

bv (r)

(w)

where A(t) represents the L00t quantiLe of the distribution of w,
and (vr) is the right hand side of (rv), if the distributj-onrs
p.d.f . is (I) .

For any fixed values of c and ï, the maximum likerihood
estimators of a and b are given by the solution, for a and b, to
the equations

E tJ. ( vr) -al lt ( vr) -altt/ct-z-o , b=
i=1

lk(vr) -a) /,/Tlt/c¡ c

<I/2, or by the solution, for a b, to the equations

[k(vr) -al 2 
,k(vr) -a

=0 , n-2 (c-2) =Qb2+ (zc-t) tk ( vr) -a)2 b2+ (2c-t) [k ( v, ) -a] 2

(lt
ñ^u
¡¿9

and

n

E_j=l ,

ifc
nt

i=L

if c>L/2. These estimators are the
which replace a and b in (II), when

of )'" which maximizes it.

functions of 
^(II) is searched

and the vi t s

for the value
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